ATAR DAQ - Hardware

- DAQ is functional and integrated into MIDAS
- Can digitize data rates up to 55
 MB/s, event rates up to 30 kHz*

*For specific parameters

Conceptual Hardware Diagram for the HDSoC Readout

Nexys A7 Video Board with Nalu's HDSoC Digitizer
Attached as an FMC Module

ATAR DAQ - Software

- Wrote a <u>midas frontend</u> that leverages custom libraries created for readout
 - Nalu Board Controller
 - Nalu Event Collector
- Separate branch for rate testing, leveraging custom RP Pico W libraries created for automatic rate testing
 - o RP Pico W remote controller
 - RP Pico W board interface

Conceptual Software Diagram for the HDSoC Readout

ATAR DAQ - Rate Tests

- Majority of input parameters
 → performance as expected
- Outliers where we underperform
 - Expect good performance under 55 MB/s
 - Looking for cause of performance drops

Expected Data Rate vs. Actual Data Rate

ATAR DAQ - Rate Tests

- For 32 channels (all active)
- 1 window = 32 12-bit ADC samples
- 1 Gsps
- Can take 32 traces length 64
 ns at rates ~20kHz reliably
- Events begin dropping near
 55 MB/s threshold
- Need to test self/internal triggering mode still
 - In these plots every channel is digitized on every trigger

Normalized Event Rate vs. Frequency (32 channels)

External Trigger Rate (Hz)

ATAR DAQ - Useful Documents

- ATAR DAQ manual hosted on github pages
 - Hardware setup guides
 - Software setup guides
 - ODB configuration and usage
 - o Etc.
- More rate testing plots available
 - See my notes page
- Documentation and examples available in project README.md files

A screenshot of a page on the ATAR DAQ Manual